Shifts in cortical representations predict human discrimination improvement.

نویسندگان

  • B Pleger
  • H R Dinse
  • P Ragert
  • P Schwenkreis
  • J P Malin
  • M Tegenthoff
چکیده

We report experiments combining assessment of spatial tactile discrimination behavior and measurements of somatosensory-evoked potentials in human subjects before and after short-term plastic changes to demonstrate a causal link between the degree of altered performance and reorganization. Plastic changes were induced by a Hebbian coactivation protocol of simultaneous pairing of tactile stimuli. As a result of coactivation, spatial discrimination thresholds were lowered; however, the amount of discrimination improvement was variable across subjects. Analysis of somatosensory-evoked potentials revealed a significant, but also variable shift in the localization of the N20-dipole of the index finger that was coactivated. The Euclidean distance between the dipole pre- and post-coactivation was significantly larger on the coactivated side (mean 9.13 +/- 3.4 mm) than on the control side (mean 4.90 +/- 2.7 mm, P = 0.008). Changes of polar angles indicated a lateral and inferior shift on the postcentral gyrus of the left hemisphere representing the coactivated index finger. To explore how far the variability of improvement was reflected in the degree of reorganization, we correlated the perceptual changes with the N20-dipole shifts. We found that the changes in discrimination abilities could be predicted from the changes in dipole localization. Little gain in spatial discrimination was associated with small changes in dipole shifts. In contrast, subjects who showed a large cortical reorganization also had lowest thresholds. All changes were highly selective as no transfer to the index finger of the opposite, non-coactivated hand was found. Our results indicate that human spatial discrimination performance is subject to improvement on a short time scale by a Hebbian stimulation protocol without invoking training, attention, or reinforcement. Plastic processes related to the improvement were localized in primary somatosensory cortex and were scaled with the degree of the individual perceptual improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning of tactile frequency discrimination in humans.

Learning is based on the remodeling of neural connections in the brain. The purpose of the present study was to examine the extent to which training-induced improvements in tactile frequency discrimination in humans are correlated with an increase of cortical representations in the primary somatosensory cortex. Healthy male subjects (n = 16) were trained in a tactile frequency discrimination ta...

متن کامل

Alfonso Nieto - Castanon

Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation than did listening to nonprototypical examples. Ex...

متن کامل

Representation of sound categories in auditory cortical maps.

Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation than did listening to nonprototypical examples. Ex...

متن کامل

Predicting shifts in generalization gradients with perceptrons.

Perceptron models have been used extensively to model perceptual learning and the effects of discrimination training on generalization, as well as to explore natural classification mechanisms. Here, we assess the ability of existing models to account for the time course of generalization shifts that occur when individuals learn to distinguish sounds. A set of simulations demonstrates that commo...

متن کامل

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 21  شماره 

صفحات  -

تاریخ انتشار 2001